
#

NATIONAL ADVISORY COMMI~EE
FOR AERONAUTICS

TECHNICAL NOTE 2822

A SPECIAL INVESTIGATION TO DEVELOP A GENERAL METHOD

THREE -DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS

By M. M. Frocht and R. Guernsey, Jr.

Institute of Technology

Washington

December 12, 1952



Iv
NACA TN 2822

SUMMARY . . .

INTRODUCTION

SYMBOLS . . .

.

.

.

.

●

✎

.

.

.

SURVEY AND ANALYSIS

.

.

.

.

.

.

.

.

.

.

.

.

TABLE OF CONTENTS

.

.

.

.

.

.

OF EXISTING

.

.

.

.

.

.

.

.

.

.

.

.

Frozen Stresses and Oblique Incidence
Separation of Principal Stresses . .

.

.

.

.

.

.

●

✎

✎

✎

✎

✎

.

.

.

.

.

.

.

.

.

.

.

.
Limitations of Mechanical Strain Measurement
Method Suggested by Prigorovsky and Preiss .

THEORYOF SHEAR DIFFERENCE METHOD . . . . . . .

APPLICJU’IONOF SHEAR DIFFERENCE METHOD TO A
DIAMETRICALLY COMPRESSED SPHERE . . . . . . .
Description of Apparatus . . . . . . . . . .
Test Procedure . . . . . . . . . . . . . . .
Results. . . . . . . . . . . . . . . . . . .
Analysis and Discussion . . . . . . . . . . .

SUMMARYOFRESULTS . . . . . . . . . . . . . .

REFERENCES . . . . . . . . . . . . . . . . . .

TABLES . . . . . . . . . . . . . . . . . . . .

FIGURES. . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
●

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

.

.

.

●

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

.

.

.

●

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

. .

.

.

.

.

.

.

.

.

.

●

✎

✎

●

✎

✎

✎

✎

●

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

●

✎

✎

✎

✎

●

✎

✎

✎

✎

✎

✎

✎

✎

●

✎

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

#

.

.

.

.
●

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

✎

Page

.

.

.

.

.

.
●

✎

✎

1

1

2

4
4
5
7
9

9

. 16
16

: 17
19

: 24

. 26

. 27

. 29

. 32

.

.

i



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICALNOTE 2822

A SPECIAL INVESTIGATION TO DEVELOP A GENERAL METHOD FOR

THREE-DIMENSIONAL PHOTOEIASTIC STRESS ANALYSIS

By M. M. Frocht md R.

suMMlmY

Guernsey, Jr.

The method of strain measurement sfter annealing is reviewed and
found to be unsatisfactory for the materials available in this country.
A newj general method is described for the photoelastic determination
of the principsl stresses at emy point of a genersl body subjected to
arbitrary loads. The method has been applied to a sphere subjected to
diametral compressive loads. The results show possibilities of high
accuracy.

INTRODUCTION

It is known that purely photoelastic procedures csmnot solve the
genersl three-dimensional stress problem. The photoelastic method fur-
nishes five independent equations> whereas the complete specification
of the state of stress,at a point requires six relations to determine
six unknown stress components.

In order to obtain a sixth relation it has been suggested that the
frozen sltces removed from the model be annealed and strain measurements
be made-after smnealing. This suggestion has recently received a rather
extensive treatment from Prigorovsky and Preiss in Russia (reference 1).
A careful anslysis of this suggested method shows that its successful
application requires model materials having relatively low vslues of
Poisson’s ratio at the elevated temperatures used in the freezing proc-
ess., Such materials are not available in this country. Fosterite and
Bakelite, which are the best available materials, have Poisson’s ratios
approximately equsl.to 1/2. It is further shown that the method of strain
measurement sfter s.nnealingbreaks down when this ratio approaches 1/2.

In this report a new method is described which does not depend on
Poisson’s ratio and therefore can be used with models made of Fosterite
and Bskelite. This method employs frozen stress patterns from normal

K and oblique incidence. The separation of the principal.stresses is
obtained by the numerical integration of one of the differential.

●
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equations of equilibrium in Cartesian coordinates rather than by strain
measurement after annesling which involves Poissonfs ratio. It will be
shown that this permits the determination oflsll six stress components
at each point of a body.

The report consists of three parts. The first part comprises a
survey smd analysis of the method in three-dimensionalphotoelasticity
which rests on.the freezing snd slicing processes and strain measure-
ment sfter’annealing. The second part presents the_theory of the new
method. The third part contains the application of the new method to
the determination of stresses in a diametrically compressed sphere.

The investigationwas conducted in the”Photoelastic Laboratory of
the Mechanics Departmentiat the Illinois Institute of Technology under
the sponsorship and with the,financial assistance of the National Adviso~
Comittee for Aeronautics.

The Research Corporation provided the funds for the fellowship held
by Mr. Roscoe Guernsey> Jr.

Mr. David Landsbergj Assistant ReX”&ch Engineer ja Experimental
Stress Analysisj assisted in all experi@rkl phases of the work. ~~.- ,4
is a pleasure to acknowledge”his cooperation.

#-

t-

Acknowledgment-is also due
in the translation of the paper

Mrs. Dora L. Frocht for her assistance P

by Prigorovsky and Preiss (reference 1).

SYMBOLS

normal stresses, psi

shesring stressesJ psi

stresses on an inclined plane, psi

principsL stresses, psi

secondary principal stresses in XY-planej psi

secondary principal stresses in X2-plane} psi

normal stresses in fringes

shearing stresses in fringes



. ‘Y‘
Tyz ‘

.

3

fringe orders at normal incidence for slices psrdlel
to XY-plme} XZ-planej snd Y!Z-planejrespectively

fringe”orders at oblique incidence
Y-sxis and Z-axisj respectively

angle of rotation of a slice; slso
inclined plane

for rotations about

angle defining an

isoclinic parameters at normal incidence for slices
parallel to XY-plane, XZ-plane, and YZ-plae,
respectively

isoclinic parameter at oblique incidence for rotation
about Y-axis

shesr fringe value of slice> psi per fringe

shear fringe value for slices -parallelto XY-plane and
XZ-plsnej respectively

shear fringe vslue of materialj psi per fringe per inch

linesx strains> inches per inch

youngis modulus, pSi

Poisson’s ratio

load, pounds

srea of equatorial.plane of sphere, squsre inches

area of surfaces of contact> square inches

radius of sphere, inches

radius of contact areas> inches .’

normal stresses in terms of P/A

shearing stresses in terms of P/A

contact pressure in terms of. P/Ac

contact shearing stress in terms of P/Ac



NACA ~ 2822

SURVEY AND ANALYSIS OF EXISTING METHODS

Frozen Stresses and Oblique Incidence

Frozen pattern.- It is now weld.established%hat elastic stress
systems can be fixed or frozen into models made of certain diphase
plastics and that such models with frozen stresses can be sliced into
thin sections without disturbing the fixed pattern (references 2, 3,
and 4). Observations of such slices in a polariscope yield the rela-
tive retardations as well as the isocltiic parameters atieach point of
the pattern.

Oblique incidence.- The use of oblique incidence of a collimated
besm of light2 as suggested by Drucker and Mindlin, adds materially to
the information obtainable photoelasti,ca,lly(references 5 and 6). The
retardation and isoclinics at normal incidence are a function of the
secondary principal stresses in the pl~e of the slicej while those at-
oblique incidence depend on the secondary principal stresses in a plsne
perpendicular to the wave normal at each point of.the slice.

The basic relation for oblique incidence with rotation about the
Z-axis is given by the following expression

{[
(~nez)2=& (ux - az) + (cy - crx) sin2e””+Txy sin ~]2 +

1

4(TxZ COS 6’+Tyz’ Sine)2 (1)

The system of notation used in this report is shown in figure 1.
Normsl stresses are positive when tensjle and negative when compressive.
The four components of sheG,rin the XY-plane are referred to either as
the T= or the TW shear system, and ths sign of this system is
positive when the shesring components are as shown in figure 1 (refer-
ence 7, par. 1.3). Similarly the shear system ’inthe YZ-plane is posi-
tive if the components are-as shown in figure 1. No signs are attached
to individual shearing stress components, their directions being deter-
mined by inspection (reference 7, par. 8.2).

By combining the data from five stress patterns of different
obliqueness it is possible to determine the three.diff’erencesbetween
the normsl stress components and the three systems of’shearing stresses
at each point in the slice (for convenience the plane of the slice is
taken as one of the coordinate planes).

.
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a It can be shown that from
aid of oblique-incidence it is
principal.shears at sll points

the five quantities obtained tith the
possible in turn to obtain the three
of the section. This is equivalent to

5

.
determining Mohrls circle for a three-dimensional state of stress except
for its origin which remains indeterminate.

Limitations of purely photoelastic data.- Except for special cases,
the opticsl data by themselves are insufficient for the determination of
the individual principal stresses. This limitation results from the
fact that isotropic stress systems produce no photoelastic effects. Con-
sequently, two states of stress differing by an srbitrary isotropic
system produce equal photoelastic effects.

The method employing scattered light, or the Tyndall effect, which
was developed in this country by Weller (references 8 and 9) and inde-
pendently by Menges (reference 10) suffers from the same limitation.

The method of convergent light employed by Eiltscher (reference 11)
and by Kuske (reference 12) makes it possible to determine also the
directions of the principal stresses but not their magnitudes.

.

c

. free

Separation of Principal Stresses

Free surfaces.- The limitation mentioned above does not hold at
boundsry surfaces. A free”surface is subjected to only two prin-

cipal stresses, similar to those in plsne stress systems. Tangential
slices yield directly the difference between the principal surface
stresses. If in addition a slice is taken normal to the surface snd
psrallel to one principsl stress, it is possible to determine the indi-
vidual principal stresses on the surface (fig. 2). This method has been
employed by Leven and Frocht (reference 13) to determine the principal
stresses on the surface of Diesel engine vslves. Leven (reference 14)
has slso applied this method ta the problem of surface stresses in tor-
sion, and Het&@ (reference 15) has applied it to threaded co=ections.
In these applications the faces of the slice were oriented to be normal
to the direction of a collimated polarized besm.

In special cases-the combination of oblique aud normal incidence
leads to a complete determination of the principsl stresses. Using this
combination, the stress distribution in Saint Venant torsion was deter-
mined (reference 16).

Planes of symmetry.- For the special case where a plane of s~etry
exists Jessop (reference 17) has developed an extension of the Lsme-
Maxwell equations (Filon’s graphicsl integration) to three-dimensional
cases. By means of these extended equations it is possible to determine
the stresses along the axis of symmetry. However, the method lacks
generality.
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Strain measurementiafter amnealing.- It has been suggested by Kuske
●.

(reference 18) that mechanical strain measurements-after annealing in
con~unction with the freezing method might be used to provide the addi-
tional relation necessary for the determination o~ the principal stres~es

F

at a general point.
three normal.stress
tally from equation

If it be assumed that the
components at a point have
(l), there result:

=2 - ~y =

J
cZy

,
‘Y-”x= %

differences between the
been found photoelasti-

(2)

CJz- ax = CXJ

where the C~s represent constants. If now the slice--fromthe mdel
containing the frozen stresses is annealed, the”state of stress i.s
relieved and the thickness of the slice at each pointiwill return to
its original unstressed value. From this change in thickness, if it
can be measured with accuracy, the strain at a point---ina direction .*
perpendiculsx to the slice can be computed. Taking this direction as
the Z-axis, for instance, the strain would be Gz; Then from Hookels
la+

~z = ;~z - V(W + .yg (Sa) .

which may be written as

[Gz= *(l- 2v)az + V(U2 - 1cry) + V(crz - Crx) (3~)

from which

E6Z - V(UZ - ay) - V(az - ax)
Oz =

(1 - 2,)

In vi~w of equations (2) this gives the
which ax ud ay are readily found.
thus been determined.

stress component-
The entire state

(4a)

uz sfter
of stress has

,-

.
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● Limitations of Mechanical Strain Measurement

Poisson!s ratio equsl l/2.-. The method outlined above would seem
to solve the problem and offer a powerful method of.attack. Closer
exmnination discloses certain serious difficulties. For most of the
plastics used in this country Poissonts ratio is very nesrly 1/2 at the
elevated temperatures used in the freezing process. If Poisson~s ratio
is taken as 1/2 then inspection of equation (k) shows that the denomi-
nator vanishes and the equation is quite useless. The method evidently
fails under these circumstances. This is a manifestation of the general
proposition from the theory of elasticity which states that when Poisson’s
ratio is 1/2 a given strain field does not determine a unique stress
field, although the converse is not true. A given stress field does
dete~ne a unique strain field.

Thus,
law may be

when Poisson’s ratio is 1/2 the genersl equations of Hooke’s
written in the form below:

Crz
J

=~EGz+cri

where

For this set of equations the

=x+uy+~z=
3

(5a)

determinant of”the coefficients vanishes
md the matrix is of rank two. There sre, therefore, itiinitely.mW
solutions. Furthermore, these solutions differ from each other by arbi-
trary isotropic stress systems ui.

As already stated, in the method employing strain measurement after
annesling the procedure is to obtain photoelasticdly two expressions
giving the

* these with

W to the
.

.

differences between the normal stress components and to combine
one expression based on the measurement of one strain 62 nor-

face of the slice. This yields the following equations:
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‘Z-”x= cm

c~z-ay ’zy

}

(m)
2UZ - (JY- ax = mez

As in the case of equations (Sa) the determinant of the coefficients of
equations (~) also vanishes and the matrix is of rank two. There are,
therefore, infinitdymeny solutions to equations (Sb). Consequently,
the method of strain measurement sfter anneali~ fails when v = 1/2.
The situation is exactly analogous to-that existing in photoelastlcity
itself where the principal stresses at a point cm be determined only
up to an arbitrary isotropic system. Strain measurement when v = 1/2
thus adds nothing to the general solution of the three-dtiensional
problem.

Poissonfs ratio nearly l/2.- If Poissonts ratio is slightly less
than 1/2, the method of strain measurement-after emnealing should theo-
retically lead to a solution. However, other difficulties arise. Equa-
tion (k) may be written as

EC= - V(C2 + c=)
az =

(1 - 2V)
(hb)

If V is the true value of Poissonls ratio and V + AV is its experi-
mentally determined value, then the error Auz in the computed stress
Crz‘ =az+&z for a measured ~z is

Crzf AV-az=Aoz=
1

(UX + Uy)
-!&w - adv

(6a)

With V very close to 1/2, a very SBEQ.1error LJV in.Poissonfs ratio
may lead to large errors Aaz in the computed stress. For instance,
if v . O.~ is assumed, which is the approxiinatevalue for I?osterite,
and Av is taken as only 0.01, then

Aaz = W(UX + CTy) = O.m(cfx + U’y) (6b)
.

/“

.
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s
Experimental measurements of v.- Experiments with the determination

of Poisson’s ratio for Fosterite and similar plastics indicate that it
. will be rather difficult to determine the value of V closer than

*5 percent. The error Aaz in equation (6b) would be particularly large
when ax ad Uy happen to be of the same sign and each is large in
comparison with Uz. All things considered, no great accuracy csn be
expected from this method so long as ,Poissontsratio is nesrly 1/2.

It must be pointed out, however, that strain measurements may serve
a useful purpose. Assuming that, in some way or other, the normal stress
components have been found, the strains can be calculated and compared
with those found experimentally. Here the error in the computed strains
due to m error in Poissonts ratio is given by

&z (7)=-~(ax + UY)AV

which is

<

.
The

stresses

not large.

Method Suggested by

method outlined above for
which employs oblique and

Prigorovsky and Preiss

the separation of the principil
normal incidence of collimated polsr.

ized ltght and strain measur~rnentafter annesling is not the onlv Dossi-
ble procedure. Prigorovsky and Preiss suggest t% alternative ~t~ods
in reference 1. Their procedures combine (1) stress patterns from nor-
msl and oblique incidence with (2) axis patterns from convergent polar-
ized light snd (3) strain measurements after annealing. The significant
point lies in the fact that the final equations obtained from their pro-
cedures have identically the same limitations as equations (5).

THEORY OF SHEAR DIFFERENCE METHOD

General theory.- A method for determining stresses in three-
dimensionsl
this method
essentially
effectively
ence method

problems is now pro~sed which is completely general. With
the six stress components at any point may be found. It iS
m extension to three dimensions of the method, long snd
used for plane problems, which is known as the shear differ-
(reference 7, ch. 8).
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.

Consider an arbitrarily loaded unsymmetrical model with the set of
.8

coordinate sxes as shown in figure 3. Leti-astraight-line AB be drawn
through point (i) from boundary to boundary ahd let this line be taken .
as the X-axis. At-any point-slong this line the first=differentialequa-
tion of equilibrium, with body forces neglected, is

&Jx h &m

z
+J?!z +-=

b az 0
(8)

and upon integration the stress at say point (j) is given by

where (ux)a denotes the stress at point–A and
.

any other point (j) on the line AB. The partial

rate of change of T= with respect to y and

(Ux)j, the stress at
derivative b7W ~~ the

ay
dT=
— is the rate of

az
change of Tm with respect to z. Thus if’values of TW were computed

along a line through (i) parallel to the Y-axis and the curve Tw = f(y)

()

aTm

were plotted, then
Fi

would be the slope of’the curve f(y) at

()aT=
point (i). Similarly —

az i
is the slope of the curve Tzx = g(z)

at pointi-(i). As in the plane problem, these slopes may be approximated
by computing the shearing stresses at points near (i) on opposite sides
of the line AB and forming finite difference quotients. ~US, choosing
nei@iboring points C and D in the XY-plsne and similarly points E and F
in the XZ-plsne,

()bTP ~ (Tyx)C - (TydD

()

A’TW

ayi &f. ‘Ayi
(lOa)

a

-.
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()
aTz . (T=)F . (TZ)E
—=

hz i Az ()
AT==
Azi

11

(lob)

Thus if the shesring stresses can be determined slong four auxilisry
lines, parallel to smd on opposite sides of AB, two lines in the XY-plane
md two in the XZ-plae, one has sll the data necessary to obtain the
quotients on the right side of equations (10) and hence good approxima-
tions to the partiel derivatives. W evaluating equations (10), care
must be taken to attach the proper signs to the shesr systems Tw and

Tzx) as in figure 1.

Substituting the above approximations for the partial derivatives
in equation (9) and replacing the integrals by summations, the I?ol.lowhw

equation is obtained:

. The summations sre evaluated
problems. For convenience,
Then equation (ha) becomes

graphically in the ssme manner as in plsme
Q and Az maybe tsken equal to h.

(crx)j= (ax)a * &ATW * &ATx
a a

. (llb)

in which AT= and ATZ have the mean value in each intervsl Ax.

Shearing stresses in first slice.- In order to csrry out this
integration, it is necesssry to determine the”magnitude snd direction
of the shesring stresses Tw d.ong the two auxiliary lines in the
XY-plae and of T= slong the two auxiliary lties in the XZ-pl~e.
The shearing stresses Tw are obtained from a slice in the XY-plane
containing AB in its middle surface. The stress pattern of this slice
from normal.incidence will give the difference between the secondary
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principal stresses in the plsne of the slice at–sJ& points, and the
corresponding isoclinics furnish then orientation, The magnitude of ,
the sheering stress Tyx at any point will then be given by

.*
—

.

T“- =:(P’ - q’) sin 2@’ (12aj

where p’ and q’ are the secondary principsl stresses in the XY-plane
and fi’ is the isoclinic parsmeter. The directions are determined by
inspection as in paragraph 8.2.of reference 7. Using equation (12a)j
the sheari~ StresSeS T= tiong the auxiliary lines and slong AB itself
may be found.

Shearing stresses in second slice.- A second slice lying in the
X!Z-planeand containing ltie AB would furnish similsr information for
T=. Here a practicsl difficulty arises since the first slice removes
an essential part of the second slice. One of..severalprocedures may
be used to eliminate this difficulty.

“ (1) IE the genersl case two identical.model.s,-identicallyloaded,
may be used, one for”the XY slice md one for the X2 slice. The shearing m
stresses Tw for the XX slice are calculated from equation (12a). Simi-
larly, the-shearing stresses ~m for the XZ slice are given by

.

;(P” -T~=— q“) sin 2@” (Mb)

where p“ snd q“ me the secondary principal stresses and @“ is the ‘
isoclinic psmmeter in the XZ slice.

(2) In large models it may be possible to use a sub slice from the
main slice for determining TX. After the data me obtained from the
main slice, a small section containing the line AB is cut from it-,as
shown in figure k(a). ‘Ihenecessary data in the XZ-plane are then
obtained from normal incidence on the sub slice, as shown. This procedure
is feasible if the model is large so that the main slice can be,made of .
sufficient–thickness.

(3) In the particular case where aphne of stress -symmetryexists,
such as the XY-plsne in figure i(b), advantage can be taken of-this
symmetry. Referring.to figure i(b), let it be assumed that the stresses
on line AB sre required. The first slice is made psrallel’to the

.
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XY-plsne end contains the line AB as shown in figure 4(c). The orthogo-
nal slice is cut from the opposite side of the body so that it contains

n the symmetricallyplaced line A’B’, along which the stresses sre the
ssme as along AB itself. The necessary shesring stresses are calculated
as outlined in procedure (1), above.

Normal stresses.- The stsxting value (ax)a willbe obtained from

bounds&y conditions and boundsry fringe orders. The integration may
then be csrried out and vslues of ax obtained sJ-ongAB. Further, from
Mohr’s circle or other considerations:

(cr~ - CYy)j = (p’ - q’)~ cos 2~’j = 2F’n’3 cos 2@’j (13a)
●

(ax -%)J= (p” - q“)j cos @“d = 2F’’n”~c9s 2@”j (13b)

where the F’s ud n’s denote, respectively, fringe vslue of the model
a in shear md fringe order at point (j). From equations (13a) and (13b)

.

(~y)j = (ax)j - (P’ -q’)J COS4’J (13C)

(az)J = (ux)J - (p” -q’f)J cos2@’J (13d)

All the necessary data for the evaluation of (ay)~ and (uz)~ are

obtained from the slices in the XY- -d XZ-plaess respectively.

Use of oblique incidence.- At this stage five of the six stress
components, namely ax, ay) az, Tyx> d Tzx, have been found at

all points of AB. There remains one unknown stress component Tyz. The
shesr system Tyz has no influence on the stress patterns from normal
incidence for either one of the slices but will have an effect on the
patterns from oblique incidence.

In order to find the shear system Tyz en oblique stress pattern is
obtained from either one of the two slices. For concreteness assume that

.
the slice psrsll.elto the XY-plane is used and that it is rotated in a
clockwise direction about the Y-sxis through a arbitrsry sngle 8.



Figure 5 ahows a view of a smallelement as seen from the positiveend of the Y-axis. From
equation (1) the fringeorder ~ at any point due to the obliqueincidenceis given by

/[ (~y=_.A_ ny- nx co829 + nz Ed&9 -
Cos e % ‘in “12+ ‘b ‘Os e - ‘Yz ‘h ‘)2.

(k)

in which ~, ~, ad nz are the known normal stressesand ~ aid n= are the knowII

ahoar systemsinfringe tits. Also, the isoclinicparameter ~~ for the obliqueincidence

is givenby the expression

1

2(N Cos e - ~z Sine)
sin 2@@ =

~y Cos e

If tke rotationabout the Y-axisbe made in the counterclockwisedirectionthen

1

t (
2

1(
n= cos%+nz sin28+ n= sin20 )

2
ney. —

nY - +knwsino+~zcose
Cos o

(llb)

b,

I-J
4=
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smd

15

●

“

2(nyz cos 0 + n- sin e)
sin 2@ey =

ney cos (3
(15b)

Similsx equations may be written for rotation of the slice psmllel to
the XZ-plane about the Z-axis.

It is to be noted that in genersl the retardation observed at sny
point depends on the direction of rotation of the slice. For one direc-
tion of rotation the fringe order at a point will be different from its
value for the other direction. In the particular case when the slice
contains a principsl plane, then Tz = Tzy = O and equations (14a) and

(14b) become identical. In such cases the direction of rotation is imma-
terial. ~ dealing with general.slices it is importsnt to note carefully
the direction of rotation relative to the wave normsl snd to attach the
proper signs to sll the stresses.

E
Each of equations (lb), (14b), (l~a), and (1~) may be solved for

the unlmown shear system nyz. It is necessary only to determine the
* fringe order and the isoclinic psrsmeter @ey slong the line AB. If

the rotatioh is co~terclockwise equation (14b) or (lZ) is appropriate.
Of these, equation (l%) is much the simpler. Using equation (1~) and
e = 45° there is obtained

nyz =~ngysin @gy - n= (15C)

With this, ~z end

ponents of stress are
‘yz = 2T~z sre easily computed. All six com-

thus determined for the point (i), and therefore
● ~he principsl stresses themselves sre determin~d at th~-given point.

Stresses in the plastic range.- It should be noted that the method
described in this report is not limited to the elastic state. It fS

equally valid in the plastic state of the model, provided the stress-
optic law for this range is lmown. This follows from the fact that the
only equations, in addition to the stress-optic law, used in this method
are the equations of equilibrium, which are independent of stress-strain
relations. It should, however, be noted that the results will apply to

. the model only and that they are not directly transferable”to the
protot~e.

.
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Effect--ofPoissonts ratio.-
in transferring the results from

In conclusion it
three-dimensional
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should be noted thati- ●

—
photoekstic models

to uet5J.
sidered.
to date,
stresses

The
items:

(1)

(2)

(3)

(4)

prototypes the effect of Poisson’s ratio will have tu be con- --
‘It is fortunate, as shown by the theoretical.solutions obtained -
that the effect-of Poisson’s ralzl.o”onthe most significant”
is small (references 19 and 20).

APPLICATION OF SHEAR DIFFERENCE METHOD

A DIAMETRICALLY COMPRESSED SPHERE

Descrip~on of Apparatus

TO

apparatus used in this investigation consisted of

An electric furnace with temperature controls and
loading frsme with special jigs

An 8-inch photoelastic polariscope with a special
tank

An oblique incidence jig

A Babinet-Soleil compensator

A photograph of the electric furnace is show in figure 6.

the following

built-in

immersion

This is a
relatively large oven k.6inches high, 42 inches wide, and 19 inches deep.
It Is fitted with automatic temperature-controls by means of which any
desired thermal cycle could be imposed on the model. The furnace was
equipped with a built=in’loading frsme suitable for the application of
all basic %~es of loading.

A specisl loading jig built for the investigation is shown in fig- . .
ure 7. It-consisted of a smooth circulsr’shaf’tabout 1/2 inch in dism-
eter passing througha. pair o&smooth, lubricated guide holes caref@lY
slined so that the axis of the shaft was perpendicular to the base. The
load was applied to the top of the shaft~hrough a hard steel ball. This
jig was fo”undto give almost perfect-vertical loading and the friction
was negligible.

A special jig was also built for oblique incidence. The frame of
the jig could be rotated about a vertical axis thro@l”any desired angle
which could easily be measured to one-tenth of ‘a“de-&ee. The slice was .

mounted in the frame of the jig and the whole unit was placed in an
immersion tank with a suitable mixture of Halowax and mineral oil. .
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b The remaining equipment was
laboratories the descriptions of.

.

Test
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stsndard apparatus in photoelastic
which are available in the literature.

Procedure

Model.- The sphere was machined from a cylinder of Fosterite which
was previously annealed to remove initial stresses. The machining was
carried out in a lathe. The rough cylinder of Fosterite was first turned
to a true cylinder. In order to form the sphere a tool bit was set in
a special jig riding on the carriage of the lathe. This bit could be
rotated about a vertical axis lying in the plane of the lathe centers.
The cutting was performed by swinging the tool bit by hand around its
verticsl sxis while the cylinder was rotating, snd the radius of the
sphere was slowly reduced by bringing the tool bit graduslly closer to
its sxis. In this way it was possible to shape the complete sphere
except for a relatively smsll nipple nesr the chuck. The final.dismeter
of the sphere was 3.313 i 0.002 inches.

Loading.- The sphere was placed in the loading jig and carefully
slined for diametrsl compressive loading. The model was then heated to
162° F in the electric furnace, the rate of heating being about 10° 1?.
per hour. A load of 172 pounds was then applied to the model. After a
soaking period of about 2 hours the temperature was lowered at the rate

. of 4° F per hour to room temperature. The find. dimeter of the equa-
torial plane was found to be 3.334 inches and the load sxis was measured
as 3.102 inches. Although relatively lsrge deformations were developed
in the loaded regions, the main body of the sphere was not notably dis-
torted from its original shape. The stress pattern of the whole sphere
in figure 8 shows that the loads and the stresses were rotationally
symmetrical.

SLxQE”- In preparation for slicing the center lines of sll the
slices were carefully scribed on the sphere using the flat spots in the
loaded regions as datum plsnes. The slices were then sawed out roughly
on a band saw to a thickness of about 3/8 inch. They were subsequently
ground by hand to about l/8-inch thickness in most cases. Great csre
was taken to keep the slices symnetricsl tith respect to their center
lines.

Figure 9 shows the slicing plm. The first slice removed was
parallel to the equator and midway between the equator and the load
point. Then from the opposite side of the sphere a meridian slice was
removed. Next a slice containing the-equatorial plane was cut. Finally
a slice psrdlel’ to the meridian slice ad hslfway out on the radius was
removed.
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Stress patterns and isoclinics.- The slices we~e mounted in the
oblique incidence jig and stress patterns at normal and oblique incidence

?

were recorded photographically. ~ical stress patterns are shown in
figures 10 to 15. Mos_taf the normal incidence patterns show very few .
fringes. In order to obtain accurate data ig these cases a Babi.net-
Soleil compensator was used to.obtain the fringe-order distribution
along the M.nes of interest by point=by-p6int-exploration. A black
cross was made on the screen to mark”the point on which attention should
be centered. The model slice was then adjusted until the line of

. interest on the image ran true on the intersection of the-cross as the
straining frame was moved hterally. Then beginning at the-outieredge
end moving the straining frame by a known amount after each observation
the fringe-order was obtained at a series of points along the line.
From these data the curve of fringe-order distribution could be plotted.

It may be not%d-that fractional fringe orders can also be obtained
by the Tsrdy method of compensat-ion,

—
the accuracy being comparable with

that of the Babinet-Soleil compensator.

Isoclinic lines were recorded by one”of two methods. For the over-
all picture the isoclinic lines were photographed in most,..cases(figs. 16
end 17). From the-photographs averaged sketches were prepared and used
in making the calculations. On several Ities direct-sketching of the n“

isoclinicswas used with attention being confined to the particular line
of interest. Here the intersections of successive isoclinic lines with
the line of interest were.obtained at very short intervals, from which

.

the distribution of the isoclinic par~etersflalong the line could ,be
plotted. This rnethod.wasf~und to be accurate and considerably less
time consuming than the photographicmethod. ~.i~light was used in
all isbclinic work:

In plane stress systems the isocllnic parameter at-a point on a
free boundsry is determined by thetangent to-the bo~&ndaryat-the point.
The isoclinic parameter thus c&nges from point-trrpoint along the
boundary in general. This is not necessarily true for isoclinics of
secondary principal stresses. In the.slice parallelto the meridi.a the
secondary principal stresses at the boundary consist solely of one normal
stress 02 which is horizontal. The boundary is therefore a zero

isoclinic end no other isoclinic may intersect the boundary at any point.
The higher-order isoclinics therefore all lie within the boundary forming
closed loops in this case, as shown in figure 17.

Fringe value.- The fringe-value of the material was obtained from a

.—

small cylinder about-1/2 inch in diameter and l~~nches long. This was

loaded in compression in the .speclal.loading jig us&@ for..thesphere and ●

subjected to the same thermal cycle as the sphere. A portion ofrthe

.
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. cylinder was machined away to leave a V shape as shown in figure 18.
The resulting stress pattern was then photographed (fig. 19). The
V shape was used to make clesrly visible the fringe of zero order

. occurring at the sharp edge of the wedge. In the cylinder itself the
first few fringes crowd together near the boundary of the cylinder and
it is practically impossible to identify the zero fringe. l&om the
stress pattern in figure 19 it was a simple matter to plot fringe order
against position, which for the wedge described is a straight line
(fig. 20).

In this way the fringe order at the point where the plane faces of
the V intersect the curved boundary of the cylinder could be accurately
determined. At.the same point the thickness h could also be measured
accurately. With the measured fringe order and thickness the fringe
value 2f of the material was found to be 3.0 psi per fringe, per inch’
compression.

Resuits

Interior stresses.- The stress distribution was obtained alona six
lines passing through the

. cated in figure 21 by the
the six lines are defined

.
A-A intersection of

B-B intersection of

c-c intersection of
to meridian

D-D load line

E-E intersection of
meridian

F-F intersection of

interior of the sphere. The lines are i~di-
letters A-A, B-B, C-C, D-D, E-E, and F-F. Thus
as follows:

meridian slice

meridian slice

slice para~el

with equatorial slice

with slice parallel to equator

to equator with slice parallel

equatorial slice with slice parallel to

slice parallel to the meridian slice with a
meridian plane perpendicular to the above two slices

In this problem advantage was taken of the symmetry of the sphere to
eliminate the need for two models as discussed in the theoretical part
of the report. In particular because of the rotational symmetry of the
stresses one meridian slice could be taken to represent all meridian
slices.

Typical calculation.- In order to make clear the application of the
method the complete calculations for line C-C will now be given. The
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evaluation of the stresses
which would be encountered
data for the determination

—.
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along this line requires all the generality .
in a body devoid of symmetry. The basic
of the stresses on this line are obtained

from the stress patterns and.isoclinics at-normal incidence of the two .

slices defining the line C-C and from the stress pattern and isoclinics
.— —

of one of the slices at oblique incidence with rotation about an axis
perpendicular to C-C and lying in the plane of the plate.

Because of the sjnmetry of the stresses along ~-C it is necessary
only to deal with half.the length of the line. This half length was
divided into 10 equal subdivisioti. The two necessary auxiliary lines
were drawn parallel to it in each of the two orthogonal planes and
spaced the length oflone subdivision apart-v

The first step is to obtain the distribution of the shearing
stresses along line C-C snd along the four auxiliary lines. This
requires the determination of the distrimtion of the secondary principal
stress differences and of the isoclinics along these lines. Figure 22
shows the curves of n’” and #’” for the slice parallel to the meridian,
and figure 23 shows 11” and ~“ fo~the slice parallel to the equator.
With these data the required shearing stresses are computed atieach
division point of C-C. Thus, following equations (12)

%Z = ~ ‘“ ‘in y

( 16a)

—

(till)

It will be noted that for positive values of z the.shear systems nyz
and nxz are positive.

As noted in the-theoreticalpsrtiof the report the Integration
requires the use afithe difference between the shearing stresses at the-
center of each subdivision. ~ese differences are obtained from the
curves representing the distribution of the shearing stresses just
found. Figure 24 shows the curyes of the shear differences.for the two
slices. .“

The next step 1s to obtain the value:of the normal stress nz at-

each divistin point by an integration of gge of the._different”ialequations
of equilibrium. The integration is carried out by approximation using
summations to replace the integrals. The appropriate equation for
line C-C is similar to equation (ha), that is, .

.



NACA ~ 2822 21

(17a)

Choofiing &
signs of the
integration.
Consequently
in such a way that Ay ‘is positive and Ax negative. The final form
of the equation is therefore

= &f = & the ratios of these quantities are unity. The
ratios depend on the choice of axes and the direction of
The integration begins at the boundary and proceeds inward.
AZ is negative. The shear differences have been formed

(in)

The signs of tk shear differences are as shown by the curves.

In order to start the integration the value of
()nz ~ is required.*

‘lhismust be determined from the boundary conditions &d boundary fringe
. orders. From the fact that the boundary is unloaded it is evident that

the principal stress normal to the boundary is zero. Inspection of the
meridian slice shows that, excepting the loaded regions, the bomdary

& stresses in the meridian section are also zero. The fringe order at the
boundary of the slice parallel to the equator is 0.58 fringe tension,
snd the direction of this stress makes an angle of 55.60 with line C-C.
The boundary value of nz is thus found from the equations of stress
transformation as follows:

unzc= 0.58 COS255.6 = 0.185

()The expression for nz
J

therefore takes the form

()
nz

J=
o.185+~~-~%z

c

(18)

( 17C)

The integration is easily carried out in tabular form as shown in
table I.

Once nz has been found the values of nx and ny are found from
. expressions similar to equation (13.), that is,

.
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This

nx =nz -

ny. nz -

computation is shown in table

The last step is to determine
system ~y. This was obtained in

.- “-NACA ~ 2822

n“ cos 2#” (19a)

n’”cos 2#’” (19b)

II”. ..

the remaining shearing stress
this case from oblique incidence

on the slice parallel to the meridian with rotati~~ through 45° about
the Y-axis. Figure 25 shows the fringe order and isoclinic distribu-
tions along C-C for this case. With these data Ud the known values
of nyz previously determined the required shearing stress component

is found from sn expression similar to equation (15c). Thus

nxy . ~ ney sin 2$ey - nyz (20)

The results of this computation ~e show-rin table 111. This completes
the solution for all six stress components along line C-C. In order
to determine the stress components in poundsper square inch it is
necessary only to multiply the stresses in frtiges by the proper fringe
value of the slice.

Using methods similar to those just explained the stress components
for all six lines have been determined. With the exception of line D-D
integration began at the boundary and proceeded inw6&d. Ibr line D-D
the starting point~ss taken as the center of the sphere and integration
proceeded upward. The starting value of ny for this line was taken

to be that obtained from line A-A. The results ofithese computations
are show-nin figures 26 to 32. At the center of the sphere the stress
componentswere found to be UY . .2.59P/A and ax = Uz . 0.45P/A.

These values may be compared with the stresses at thecenter of’a disk
under diametral compression which are ay = -1.9U’/A and ax = o.64P/A.

COntaCt streSSes at load pointB.- As noted previously the loads on
the sphere produced considerable local deformation which resulted in
flatt~ned &eas at the poles. Upon observation of the meridian slice
it was found that fringes and isoclinics were unw”ually clear right to
the loaded boundary. It was tliereforepossible to continue the integra-
tion all the way to the loaded boundary along lines normal to the areas
of contact and thereby to obtain approximations to the contact stresses.
The stress components at the ends o&line 12-Dreyresent the contact

..
.-

stresses at the poles, that is, at the centers ofithe loaded areas. “In-”
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. order to detertine, at least roughly, the actual distribution of the
contact stresses over the loaded areas two additional slices normal to
the loaded zones were cut from the remaining material of the sphere.

. The intersections of these slices with the meridian slice then define
two lines parallel to line D-D which extend from line B-B to the loaded
boundary. Starting values were taken from the stress distribution on
line B-B previously obtained, and integration proceeded to the loaded
boundary in the usual fashion. In this way the contact stresses at two
points at different distmces from the center were obtained. With these
three points the distribution of the noml stresses on the contact
surface could be pretty well determined. The shearing stresses acting
on the surface of contact were found from the values of n’ and the
isoclinics @‘ in a meridian section in the region of contact. The
results are shown in figure 33, the directions of the shearing stresses
being from the poles outward.

.

Checks on accuracy.- Two types of checks are available in this
problem, static checks and checks between stresses on different lines.
Static checks were made from the stresses on lines A-A and B-B and from
those acting on a diameter in the surfaces of contact. Since these
stresses are rotationally symmetrical the resultant force acting on the
equatorial plane andqn the plsne containing line B-B parallel to the L
equator as well as on the plane of contact can be determined by integra-
tion. From the stresses on line A-A the resultant load on the equatorial
plane was computed as 176 pounds, which is 2.3 percent higher than the
applied load of 172 pounds. The stresses on line B-B gave a resultant
of 168 pounds which is 2.3 percent low. Lastly the resultant of the
normal stresses on the surface of contact was found to be 170 pounds,
or 1.2 percent low.

Points O’ amd 01’ (fig. 21) are common paints on different lines.
The stresses at these points can be determined from each line end the
results compsred. The stresses at 0’ were found by integrating along
line B-B and also by integration along the path AOO’. l%om line B-B
the stresses were found to be ny . -4.o8 and nx = nz . ().40. llrom

the path AOO’ they were found to be ny = -4.o6 and nx = nz = 0.42.
At 01’ the stresses are found from lines C-C and F-F. From line C-C
the stresses were computed as ~ = -1.12, ~ = -0.36, nz = 0.43, and

nxy = O.62. From line F-F they were riy= -1.14, nx = -0.39, nz = 0.40,

and nxy = 0.66. The agreement in these values is seen to be quite good.

It is also possible to compute the stresses on lines C-C and E-E
from the stresses on lines A-A and B-B. Figure 34 shows the rectangular
stress components on lines C-C and B-B. The necessary equations for

. transformation are similar to the familiar equations for inclined planes

.
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in plane stress systems, that is,

ISx+tSy ax-ay
—

ae
‘~. + 2

COS 2e + Txy Sh 2e

% - ay
‘e =“~ Sin ae .- Txy cos 2e

NACA TN 2822

(21a)

(21b)

The stresses computed by transformationwere compfied with the stresses
independently determined on.lines C-C and E-E by integration. The com-
parative values are shown in figures 28, 29, and 31. The general agre@- “-
ment is seen to be excellent.

Check by the Lam6-Msxwell equations.- Lines A-A and D-D are lines
of symmetry for the sphere. For these special lines the stresses can
be computed by the method outlined by Jessop (refe~ence 17) using the
extension ofithe Lame$-Maxwellequations to three dimensions. This
computation has been c~ried out using fringe orders from the meridian
and equatorial slices s.ndthe 5° isoclinic from the meridian slice. .

The comparative values are given in figure 26 for Mne A-A and figure 30
for line D-D. Inspection ofithe figures shows that fi both cases the
agreement is close.

.

Analysis and Discussion

The prirnaiyobjective of the project tider discussion was to develop
a general method for solving three-dimensional problems photoelastically.
In the theoretical part of this report such a method is described. The
experimentalwork shows that the proposed method is practical.

It--is too esrly to draw broad conclusions regarding the general
accuracy ofithe new method. However, the excellence of the static-checks
and the consistency of’the results, as shown by the close cross checks
between the results from the various lines, seem to indicate possibil-
ities of high accuracy. Unfortunately there is as yet no theoretical
solution available for this -particularproblem to furnish conclusive ...—
checks and a measure of the “errors. Nevertheless there is a reasonable ‘“
degree of certainty that-the major stresses are free from significant”
error.

I.tmust be pointed out that the stresses as found here represent
the solution for a material for.which Poisson’s ratio is 0.48, whereas

.

most structural materials have Poisson’s ratios of-about 0.3. This iS
.
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an inherent limitation of three-dimensional photoelasticity. However,w
as noted previously, the theoretical solutions available to date indicate
that Poisson’s ratio has only a small influence on the major stresses
although the effect on the minor stresses may he pronounced (refer-
ences 19 and 20).

Althoughno theoretical solution is available for the sphere
Hertz’s solution can be used to check the contact stresses determined
photoelastically. According to Hertz’s solution the contact pressure
is representable by the ordinates to a hemisphere erected on the contact
surface. Further the Hertz theory predicts that the maximum contact
pressure should be 1.5P/&. Reference to figure 33 shows.that the
experimentally determined value of the maximum pressure is 1.53P/&,
which is 2.percent high. When it is considered that the path of integra-
tion used in determining the maximum presswe led along sn equatorial
radius to the center and thence up the load sxis to the surface this is
indeed a remarkable check. The general distribution of the pressures
is also seen to be substantially correct. The proposed method would
therefore seem to hold considerable promise for the determination of
contact stresses.

According to the Hertz theory the two principal stresses in the
. plsne of the contact surface at the pole, ax and IJz, should each

l+2v_aequal For Poisson’s ratio of 1/2 this reduces to
2“ y“.

‘JX= ~z = ‘Y
which indicates that an isotropic point exists at the pole,

and therefore the shearing stress is zero at this point. This is borne
out by the photoelastic results.

Along the circular boundary of the surface of contact the stress

()1 -2VPconsists of a pure shear of the amount
3 z

according to the

Hertz theory: If Poisson’s ratio is 1/2 ‘t~-sexpression vsnishes.
Hence the normal and shearing stresses at the boundary should be zero.
The photoelastic results are seen to give this value.

The problem treated in this report has complete rotational symmetry
which simplifies the experimental technique by eliminating the use of
two models. No problem has as yet been solved which requires two models.
The use of two models will no doubt introduce complications, but no
insurmountable difficulties are anticipated. However, further work must
be done to demonstrate the effectiveness of the proposed method with two
models. -“

There remains also the possibility of using sub slices from the.
main slice as discussed in the theoretical psrt. The model used in this
investigationwas not large enough to make this procedure feasible
although some attempts were made.. This possibility also needs to be
further explored.
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sphere with smaller loads in
deformations.
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desirable to repeat the solution of the --
order to reduce the relatively large local

.-

.
.

SUMMARY OF RESULTS

The results from this investigation to detielopa general method f&
three-dimensionalphoto.elasticstress analysis may be summarized as
follows:

1. The method of strain measurement after annealing cannot be used
with the materials now available in this country.

2. A general photoelastic method of’obtaining six stress components
at any point of an unsymmetrical body arbitrarily loaded has been
developed. This method does not depend on Poisson’s ratio, although the—
results reflect the physical const&ts of-the model.

3. The

4. The
stresses.

5. The

new method is applicable in the plastic range of

method shows possibilitiesfor the det-ermination—

the model.

ofl.contact .

stresses existing in a sphere.subjectedto diametral com-
.

pressi,onhave been determine~ with c&siderabie ac~uracy.

6. At the center of the sphere the stress components were found to
be cry. -2.59P/A and ax = az = 0.45P/A, where P is the load on the

sphere and A is the area of the equatorial plane of the sphere. These
values may be compsred with the stresses at-the center of a disk under
diametral compressionwhich are ‘Y = -1.91P/A and Gx = o.64P/A.

7. Further work is neede~ to determine the full potentialities of
the method when two models are used. Further work is also needed to
determine the practicability of sub slices.

Illinois Institue of Technology
Chicago 16; III., September 15, 1951 —

.
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TABLEI

.

NUMERICAL INTEGRATION OF DIFIZERENTl%L

EQUATION (17c) FOR LINE C-C

o 0.431
0.012 -0.009

n. n 1,-1A

0.4 0.231
0.021 -0.038

0.5 0.172
0.009 -0.033

0.6 0.130
0.001 -0.024

V.( w . Lu)

-0.004 -0.014
0.8 . 0.095

-0.019 -0.001
0.9 0.113

-0.060 0.o12
1.0 0.185
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TABLEII
CALCULATION OF NO- STRESS COMPONENTS FOR LINE C-C

z
q

n= n“

o 0.43 0.79

0.1 o.kl 0.79

0.2 0.36 0.78

4‘Y
(4)

-1.12

-1.100.993 I 0.76 I 1.51 1-0.350.957 1.52

0.972 I 0.66 I 1.39 -0.300.841 1.43 -1.03

1
-0.92

-0.82
——
-0.69

-0.-56

0.674

0.488
0.302

.—_—
0.122.
..—

-0.035

0.942 0.52 1.22 -0.22

0.906 0.37 1.05 -0.14

0.863 0.22 0.86 -0.05
—.

0.827 0.08 0.69 0.05

0.809 -0.02 0.57 0.12

0.3 0.30 0.77’

0.4 0.23 o.76~

0.5 0.17 0.74
-. . . —.—

0.6 0.13 0.70,

70.7 0.10 0.66

0.8 0.10 0.62

0.9 0.11 0.60

1.0 0.18 0.59

1.30

1.16

1.00

0.84

0.70 -0.47 [

-0.167

-0.282

0.56

0.40

0.819 -0.10
[

0.46 0.20
I I

+

-0.36

-0.24

0

0.866 -0.17 0.35 0.28

1.000 -0.22 I 0.18 I 0.400.18-0.375

1
L

nz - nx = n“ Cos 2$”.—-
2
nz-ny== ‘“Cos 2@’”.

3
nx =nz- (nz - nx).

4
‘Y

=nz - (nz - .%)”
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TABLE III

CALCULATION OF SHEARING STRESS BY OBLIQUE INCIDENCE FOR LINE C-C

z
q ‘ey Zfiey $ ngy sin 2@6y ‘w

27 .

0 2.22 34.8 0.63 0 0.63

0.1 2.14 41.0 0.70 0.09 0.61.

0.2 1.99 47.4 0.73 0.17 o.~~

0.3 1.82 54.8 0.74 0.22 0.52

0.4 1.63 61.4 0.71 0.25 0.46

0.5 1.42 65.6 0.65 0.25 0.40

0.6 1.20 67.0 0.55 0.24 0.31

0.7 0.99 66.0 . 0.45 0.21 0.24

0.8 0.79 62.0 0.34 0.16 0.18

0.9 0.55 49.0 0.20 0.10 0.10

1.0 0.28 0 0 0 0

1nxy=Z 1 ney sin 2@eY - nn ●



32

/’

—.
NACA TN 2822

.

Y

TZy

7+-TZx

Crz

●

- Cx
.

Figure 1.- Positive normal strese components and ptiitive systems of
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shearing stresses.
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Figure 2.- I?ecessaryslices and directions of light for determination of
surface stresses. L, direction of light.
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(b) Loadedmodel. (c) Slicesfrom oppositesides of
plane of Sylmlletry.

Figure 4.- Schematicdiagramof necessarydices.
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Figure5.-Normal Incidence and obli~e incidencefor differentdirec-
tions of rotation.
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Figure 6.- Electric furnace and control panel.
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Figure 7.- Loading jig and ~odel of sphere.

!!!!k&

-..-—— . ...

Figure &.- Stress pattern of whole splyme.
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Figure 9.- Slicing plan for sphere. “1, slice parallel to equator;
2, meridian slice; 3, slice p~allel to meridian; and 42 equa-
torial slice.

.



.

40 NACA ~ 2822

.

Figure 10.- Stress pattern of meridian slice at normal incidence.
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Figure 11.- Stress pattern of meridian slice for a_rotation of 47° about

.

.

Y-axis.
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Figure 12.- Stress pattern
=s=’”

of slice parallel to equator at normal
incidence.

—.. - . .!
—. .-.:--- . . . .

---

——..

_.. .— \ —
.-— — ./

4

=@s=
Figure 13. - Stress pattern of slice parallel to equator for a rota-

tion of 45° about X-axis.
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Figure 14.-.Stress pattern of slice parallel to-meridian at normal
incidence. .

Figure 15.-“Stresspattern d siice paraiiel to meri-tianfor”a””rotation”
of 45° about Y-axis.
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.~16. - Typical isoclinic for meridian slice.

Figure 17. - ~ical isoclinic for slice parallel to meridian. ~
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Figure 18.. Cross section of calibrationmember after machining of wedge.

Figure 19. - Stress pattern

,

of calibrationmember. ~
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Figure 20.- Fringe order for calibration member as a function of distance

from edge of wedge.
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stress distributions were
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